

Welcome to PyQL’s documentation

Contents:

	Getting started
	PyQL - an overview

	Building and installing PyQL

	Installation from source

	Installation from source on Windows

	Tutorial

	User’s guide
	Business dates

	Reference

	Mlab

	Notebooks

	Reference guide
	Reference documentation for the quantlib package

	How to wrap QuantLib classes with cython

	Roadmap

	Documentation

Indices and tables

	Index

	Module Index

	Search Page

Getting started

PyQL - an overview

Why building a new set of QuantLib wrappers for Python?

The SWIG wrappers provide a very good coverage of the library but have
a number of pain points:

	Few Pythonic optimisations in the syntax: the python code for invoking QuantLib functions looks like the C++ version;

	No docstring or function signature are available on the Python side;

	The debugging is complex, and any customization of the wrapper involves complex programming;

	The build process is monolithic: any change to the wrapper requires the recompilation of the entire project;

	Complete loss of the C++ code organisation with a flat namespace in Python;

	SWIG typemaps development is not that fun.

For those reasons, and to have the ability to expose some of the
QuantLib internals that could be very useful on the Python side, we
chose another road. PyQL is build on top of Cython and creates a thin
Pythonic layer on top of QuantLib. It allows a tight control on the
wrapping and provides higher level Python integration.

Features:

	Integration with standard datatypes (like datetime objects) and numpy arrays;

	Simplifed API on the Python side (e.g. usage of Handles completely hidden from the user);

	Support full docstring and expose detailed function signatures to Python;

	Code organised in subpackages to provide a clean namespace, very close to the C++ code organisation;

	Easy extendibility thanks to Cython and shorter build time when adding new functionalities;

	Sphinx documentation.

Building and installing PyQL

Prerequisites:

	Boost (version 1.55 or higher)

	QuantLib [http://www.quantlib.org] (version 1.5 or higher)

	Cython [http://www.cython.org] (version 0.19 or higher)

Once the dependencies have been installed, enter the pyql root directory. Open the setup.py file
and configure the Boost and QuantLib include and library directories, then run

python setup.py build

Installation from source

The following instructions explain how to build the project from source, on a Linux system.
The instructions have been tested on Ubuntu 12.04 LTS.

Prerequisites:

	python 2.7

	C++ development environment

	pandas 0.9

	Install Boost (taken from a nice post [https://coderwall.com/p/0atfug] by S. Zebardast)

	Download the Boost source package

wget -O boost_1_55_0.tar.gz \
http://sourceforge.net/projects/boost/files/boost/1.55.0/boost_1_55_0.tar.gz/download
tar xzvf boost_1_55_0.tar.gz

	Make sure you have the required libraries

sudo apt-get update
sudo apt-get install build-essential g++ python-dev autotools-dev libicu-dev libbz2-dev

	Build and install

cd boost_1_55_0
sudo ./bootstrap.sh --prefix=/usr/local
sudo ./b2 install

If /usr/local/lib is not in your path:

sudo sh -c 'echo "/usr/local/lib" >> /etc/ld.so.conf.d/local.conf'

and finally:

sudo ldconfig

	Install Quantlib

	Download Quantlib 1.5 from Quantlib.org and copy to /opt

wget -O QuantLib-1.5.tar.gz \
http://sourceforge.net/projects/quantlib/files/QuantLib/1.5/QuantLib-1.5.tar.gz/download
sudo cp QuantLib-1.5.tar.gz /opt

	Extract the Quantlib folder

cd /opt
sudo tar xzvf QuantLib-1.5.tar.gz

	Configure QuantLib

cd QuantLib-1.5
./configure --disable-static CXXFLAGS=-O2 --with-boost-include=/usr/local/include --with-boost-lib=/usr/local/lib

	Make and install

make
sudo make install

	Install Cython. While you can install Cython from source, we strongly recommend to install Cython via pip [https://pypi.python.org/pypi/pip]:

pip install cython

If you do not have the required permissions to install Python packages in the system path, you can install Cython in your local user account via:

pip install --user cython

	Download pyql (https://github.com/enthought/pyql), then extract, build and test:

$ cd ~/dev/pyql
$ make build
$ make tests

If you have installed QuantLib in a directory different from /opt, edit the setup.py file before running make and update the INCLUDE_DIRS and LIBRARY_DIRS to point to your installation of QuantLib.

Installation from source on Windows

The following instructions explain how to build the project from source, on a
Windows system.
The instructions have been tested on Windows 7 32bit with Visual Studio 2008.

Prerequisites:

	python 2.7 (e.g. Canopy with Cython 0.20 or above)

	pandas 0.9

	Install Quantlib

	Install the latest version of Boost from sourceforge. You can get the
binaries of 1.55 for windows 32 or 64bit depending on your target.

	Download Quantlib 1.5 from Quantlib.org and unzip locally

	Extract the Quantlib folder

	Open the QuantLib_vc9 solution with Visual Studio

	Patch ql/settings.hpp.

In the ql/settings.hpp file, update the Settings class defintion as
following (line 37):

class __declspec(dllexport) Settings : public Singleton<Settings> {

	In the QuantLib project properties

	Change “General” -> “Configuration type” to “Dynamic Library (DLL)”

	Apply

	Add the Boost include directory to “C/C++” -> “Additional Include Directories”

	Apply

Do a first build to get all the object files generated

	Generate the def file:

In your PyQL clone, got the scripts directory, and edit the main function.
Set input_directory to the Release directory where your object files are
and change the output_file if appropriate (symbol_win32.def is the
default) ! The def file is platform specific (you can’t reuse a 32bit def
file for a 64bit linker).

This will generate a def file of about 44 Mb with all the needed symbols for
PyQL compilation.

	Build the dll with the new def file

	Change “Linker” -> “Input” -> “Module definition file” to point to
def file you just generated.

	Apply the changes and build the project

	Copy the QuantLib.dll to a directory which is on the PATH (or just the
PyQL directory if you’re in development mode)

	Install Cython. While you can install Cython from source, we strongly
recommend to install Cython via the Canopy Package Manager, another Python
distribution or via pip [https://pypi.python.org/pypi/pip]:

pip install cython

If you do not have the required permissions to install Python packages in the system path, you can install Cython in your local user account via:

pip install --user cython

	Build and test pyql

Edit the setup.py to make sure the INCLUDE_DIRS and LIBRARY_DIRS point to
the correct directories.

PS C:\dev\pyql> python setup.py build
PS C:\dev\pyql> python setup.py install

Note

Development mode

If you want to build the library in place and test things, you can do:

PS C:\dev\pyql> python setup.py build_ext --inplace
PS C:\dev\pyql> python -m unittest discover -v

Tutorial

User’s guide

Business dates

Business dates handling capabilities is provided by the quantlib.time
subpackage. The three core components are Date, Period and Calendar.

Date

A date in QuantLib can be constructed with the following syntax:

Date(serial_number)

where serial_number is the number of days such as 24214, and 0 corresponds to 31.12.1899. This
date handling is also known from Excel. The alternative is the construction via:

Date(day, month, year)

Here, day, month and year are of integer. A set of month constant are available in the date module (January, …, December or Jan, …, Dec)

After constructing a Date, we can do simple date arithmetics, such as adding/subtracting days and months to the current date. Furthermore, the known convenient operators such as +=,-= can be used.

It is possible to add a Period to a date. Period can be created using time units or frequency:

Period(frequency)
Period(lenght, time_units)

Frequencies are defined with the following constants: NoFrequency, Once,
Annual, Semiannual, EveryFourthMonth, Quartely, Bimonthly, Monthly,
EveryFourthWeek, Biweekly, Weekly, Daily and OtherFrequency.

Time units are constants defined in the date module: Days, Weeks, Months, Years.

Each Date object has the following properties:

	weekday returns the weekday using the weekday constants defined in the
date module (Sunday to Saturday and Sun to Sat).

	day returns the day of the month

	day_of_year returns the day of the year

	month returns the month

	year returns the year

	serial returns a the serial number of this date

The quantlib.time.date module has some useful static functions,
which give general results, such as whether a given year is a leap
year or a given date is the end of the month. The currently available
functions are:

	today()

	mindate(): earliest possible Date in QuantLib

	maxdate(): latest possible Date in QuantLib

	is_leap(): is year a leap year?

	end_of_month(): what is the end of the current month the date is in?

	is_end_of_month(date)(): is date the end of the month?

	next_weekday(date, weekday)(): on which date is the weekday following
the date? (e.g. date of the next Friday)

	nth_weekday(n, weekday, month, year)(): what is the n-th weekday in the
given year and month? (e.g. date of the 3rd Wednesday in July 2010)

Calendars

One of the crucial objects in the daily business is a calendar for different countries which shows the holidays, business days and weekends for the respective country. In QuantLib, a calendar can be set up easily via:

uk_calendar = UnitedKingdom()

for the UK. Calendars implementation are available in the
quantlib.time.calendars subpackage.

Various other calendars are available, for example for Germany, United States, Switzerland, Ukraine, Turkey, Japan, India, Canada and Australia. In addition, special exchange calendars can be initialized for several countries.
For example, the New-York Stock Exchange calendar can be initialized via:

us_calendar = UnitedStates(NYSE);

The following functions are available:

	is_business_day(date)()

	is_holiday(date)()

	is_weekend(week_day)(): is the given weekday part of the weekend?

	is_end_of_month(date)(): indicates, whether the given date is the last
business day in the month.

	end_of_month(date)(): returns the last business day in the month.

The calendars are customizable, so you can add and remove holidays in your calendar:

	addHoliday(date)()

	removeHoliday(date)(): removes a user specified holiday

Furthermore, a function is provided to return a list of holidays

	holidayList(calendar, from_date, to_date, include_weekends=False)():
returns a holiday list, including or excluding weekends. This function
returns a DateList object that provides an list/iterator-like interface on
top of the C++ QuantLib date vector.

Adjusting a date can be necessary, whenever a transaction date falls on a date that is not a business day.

The following Business Day Conventions are available in the calendar module:

	Following: the transaction date will be the first following day that is a business day.

	ModifiedFollowing: the transaction date will be the first following
day that is a business day unless it is in the next month. In this case it
will be the first preceding day that is a business day.

	Preceding: the transaction date will be the first preceding day that
is a business day.

	ModifiedPreceding: the transaction date will be the first preceding
day that is a business day, unless it is in the previous month. In this
case it will be the first following day that is a business day.

	Unadjusted

	The Calendar functions which perform the business day adjustments are :

	
	adjust(date, business_day_convention)

	advance(date,period, business_day_convention, end_of_month): the
end_of_month variable enforces the advanced date to be the end of the
month if the current date is the end of the month.

Finally, it is possible to count the business days between two dates with the following function:

	business_days_between(from_date, to_date, include_first, include_last)
calculates the business days between from and to including or excluding
the initial/final dates.

We will demonstrate an example by using the Frankfurt Stock Exchange calendar and the dates Date(31,Oct,2009) and Date(1,Jan,2010). From the first date, we advance 2 months in the future, which is December, 31st. Since this is a holiday and the next business day is in the next month, we can check the Modified Following conversion. The Modified Preceding conversion can be checked for January, 1st 2010:

frankfcal = Germany(FrankfurtStockExchange);
first_date = Date(31,Oct,2009)
second_date = Date(1,Jan ,2010);

print "Date 2 Adv:", frankfcal.adjust(second_date , Preceding)
print "Date 2 Adv:", frankfcal.adjust(second_date , ModifiedPreceding)

mat = Period(2,Months)

print "Date 1 Month Adv:", \
 frankfcal.avance(
 first_date, period=mat, convention=Following,
 end_of_month=False
)
print "Date 1 Month Adv:", \
 frankfcal.avance(
 first_date, period=mat, convention=ModifiedFollowing,
 end_of_month=False
)
print "Business Days Between:", \
 frankfcal.business_days_between(
 first_date, second_date, False, False
)

and the output will give

Date 2 Adv: 30/12/2009
Date 2 Adv: 4/01/2010
Date 1 Month Adv: 4/01/2010
Date 1 Month Adv: 30/12/2009
Business Days Between: 41

Day counters

Daycount conventions are crucial in financial markets. QuantLib offers :

	Actual360: Actual/360 day count convention

	Actual365Fixed: Actual/365 (Fixed)

	ActualActual: Actual/Actual day count

	Business252: Business/252 day count convention

	Thirty360: 30/360 day count convention

The construction is easily performed via:

myCounter = ActualActual()

The other conventions can be constructed equivalently. The available functions are :

	dayCount(from_date, to_date)

	yearFraction(from_date, to_date)

TODO : add example

Date generation

An often needed functionality is a schedule of payments, for example for coupon payments of a bond. The task is to produce a series of dates from a start to an end date following a given frequency(e.g. annual, quarterly…). We might want the dates to follow a certain business day convention. And we might want the schedule to go backwards (e.g. start the frequency going backwards from the last date).

For example:

	Today is Date(3,Sep,2009). We need a monthly schedule which ends at Date(15,Dec,2009). Going forwards would produce Date(3,Sep,2009),Date(3,Oct,2009),Date(3,Nov,2009),Date(3,Dec,2009) and the final date Date(15,Dec,2009).

	Going backwards, on a monthly basis, would produce Date(3,Sep,2009),Date(15,Sep,2009),Date(15,Oct,2009), Date(15,Nov,2009),Date(15,Dec,2009).

The different procedures are given by the DateGeneration object and will now be
summarized:

	Backward: Backward from termination date to effective date.

	Forward: Forward from effective date to termination date.

	Zero: No intermediate dates between effective date and termination date.

	ThirdWednesday: All dates but effective date and termination date are taken to be on the third Wednesday of their month (with forward calculation).

	Twentieth: All dates but the effective date are taken to be the twentieth of their month (used for CDS schedules in emerging markets). The termination date is also modified.

	TwentiethIMM: All dates but the effective date are taken to be the twentieth of an IMM month (used for CDS schedules). The termination date is also modified.

The schedule is initialized by the Schedule class:

Schedule(effective_date , termination_date, tenor, calendar, convention ,
 termination_date_convention , date_gen_rule,
 end_of_month, first_date, next_to_last_date)

The arguments represent the following

	effective_date, termination_date: start/end of the schedule

	tenor: a Period object reprensenting the frequency of the schedule
(e.g. every 3 months)

	termination_date_convention: allows to specify a special business day
convention for the final date.

	rule: the generation rule, as previously discussed

	end_of_month: if the effective date is the end of month, enforce the schedule dates to be end of the month too (termination date excluded).

	first_date, next_to_last_date: are optional parameters. If we generate the
schedule forwards, the schedule procedure will start from first_date and
then increase in the given periods from there. If next_to_last_date is set
and we go backwards, the dates will be calculated relative to this date.

The Schedule object has various useful functions, we will discuss some of them.

	size(): returns the number of dates

	at(i) : returns the date at index i.

	previous_date(ref_date): returns the previous date in the schedule compared
to a reference date.

	next_date(ref_date): returns the next date in the schedule compared to a
reference date.

	dates(): returns the whole schedule in a DateList object.

Performance considerations

In [3]: %timeit QuantLib.Date.todaysDate() + QuantLib.Period(10, QuantLib.Days)
100000 loops, best of 3: 9.71 us per loop

In [4]: %timeit datetime.date.today() + datetime.timedelta(days=10)
100000 loops, best of 3: 3.55 us per loop

In [5]: %timeit quantlib.date.today() + quantlib.date.Period(10, quantlib.date.Days)
100000 loops, best of 3: 2.17 us per loop

Reference

The mlab module provides high-level functions suitable for easily performing common quantitative finance calculations. These functions use as input standardized data structures that are provided to limit the amount of data transformation needed to string functions together.

The mlab functions often use pandas data frames as inputs. In order to encourage inter-operability between functions, we have defined a number of standard data structures. The column names of these data frames are defined in the ‘’names’’ module. The standardized data structures should be created with the functions provided in the ‘’data_structures’’ module.

Names

The column names of all datasets are defined in names.py. A column name should always be referenced by the corresponding variable name,
and not by a character string. For example, refer to the ‘Strike’ column of an option_quotes data
set by:

import quantlib.reference.names as nm
strike = option_quotes[nm.STRIKE]

rather than:

strike = option_quotes['Strike']

Data Structures Templates

These data structures are defined to facilitate the inter-operability of the high level functions found in the ‘mlab’ module.

Option Quotes

This data structure contains the necessary data for calibrating a stochastic model for the underlying asset, also known as volatility model.

An option quotes data structure with 10 rows is created with the statements:

import quantlib.reference.data_structures as ds
option_quotes = ds.option_quotes_template().reindex(index=range(10))

Risk-free Rate and Dividends

When calibrating a volatility model, the default algorithm is to compute the implied term structure of risk-free rate and dividend yield from the option data, using the call-put parity relationship. The result of this calculation is the ‘riskfree_dividend’ data structure.

Mlab

The mlab module provides high-level functions suitable for easily performing common
quantitative finance calculations. These functions use as input standardized data structures
that are provided to limit the amount of data
transformation needed to string functions together.

Standardized data structures

Curve building

Asset pricing

Notebooks

The notebooks and scripts folder provide sample calculations performed with
QuantLib.

Getting started

In order to use the notebokks, you need to install:

	Ipython 0.13

	pylab

	matplotlib

Make sure that pyQL is in the PYTHONPATH.
You can access the notebooks with the command:

ipython notebook --pylab inline <path to the notebooks folder> --browser=<browser name>

For example, on a linux system where the pyql project is located in ~/dev, the command to view the notebooks with the Firefox browser would be:

ipython notebook --pylab inline ~/dev/pyql/examples/notebooks --browser=firefox

The browser will start and display a menu with several notebooks.
As of October 2012, you should see 8 notebooks, as shown below:

[image: _images/notebook-browser.png]
Notebook menu in the Firefox browser.

Reference guide

Reference documentation for the quantlib package

The API of the Python wrappers try to be as close as possible to the C++
original source but keeping a Pythonic simple access to classes, methods and
functions. Most of the complex structures related to proper memory management
are completely hidden being the Python layers (for example boost::shared_ptr and Handle).

quantlib

quantlib.settings

quantlib.quotes

quantlib.cashflow

quantlib.index

quantlib.interest_rate

quantlib.currency

quantlib.currency.currency

quantlib.currency.currencies

quantlib.indexes

quantlib.instruments

quantlib.instruments.bonds

quantlib.instruments.option

quantlib.instruments.credit_default_swap

quantlib.math

quantlib.model.equity

quantlib.pricingengines

quantlib.pricingengines.swaption

quantlib.processes

quantlib.termstructures

quantlib.termstructures.inflation_term_structure

quantlib.termstructures.default_term_structure

yield_term_structure

:quantlib.termstructures.yields

mod:~quantlib.termstructures.yields.rate_helpers

bond_helpers

flat_forward

zero_curve

quantlib.termstructures.credit

default_probability_helpers

piecewise_default_curve

flat_hazard_rate

interpolated_hazardrate_curve

quantlib.time

quantlib.time.date

quantlib.time.calendar

quantlib.time.daycounter

quantlib.time.daycounters

simple

thirty360

quantlib.time.schedule

How to wrap QuantLib classes with cython

These notes provide a step by step guide to wrapping a QuantLib (QL) class
with cython, so that it can be invoked from python.

The objective is to make available in python a set of modules that
exactly mirror the QL class hierarchy. For example, QL provides a
class named SimpleQuote, that represents a simple price
measurement. The C++ class is defined as follows:

class SimpleQuote : public Quote {
 public:
 SimpleQuote(Real value = Null<Real>());
 Real value() const;
 bool isValid() const;
 Real setValue(Real value = Null<Real>());
};

After wrapping the C++ class, this class is now available in python:

from quantlib.quotes import SimpleQuote
spot = SimpleQuote(3.14)
print('Spot %f' % spot.value)

A couple of observations are worth mentioning:

	pyql preserves the module hierarchy of QuantLib:
the SimpleQuote class is defined in the quote module in C++.

	pyql exposes QuantLib in a pythonic fashion: instead of exposing the accessor value(),
pyql implements the property value.

The Interface Code

To expose QL class foo, you need to create three files. For the sake of
standardization, they should be named as follows:

	_foo.pxd

	A header file to declare the C++ class being exposed,

	foo.pxd

	A header file where the corresponding python class is declared

	foo.pyx

	The implementation of the corresponding python class

The content of each file is now described in details.

Declaration of the QL classes to be exposed

This file contains the declaration of the QL
class being exposed. For example, the header file _quotes.pxd is
as follows:

include 'types.pxi'

from libcpp cimport bool

cdef extern from 'ql/quote.hpp' namespace 'QuantLib':
 cdef cppclass Quote:
 Quote() except +
 Real value() except +
 bool isValid() except +

cdef extern from 'ql/quotes/simplequote.hpp' namespace 'QuantLib':

 cdef cppclass SimpleQuote(Quote):
 SimpleQuote(Real value) except +
 Real setValue(Real value) except +

In this file, we declare the class SimpleQuote and its parent Quote.
The syntax is almost identical to the corresponding C++ header file. The
types used in declaring arguments are defined in types.pxi.

The clause ‘except +’ signals that the method may throw an exception. It
is indispensible to append this clause to every declaration. Without it, an
exception thrown in QL will terminate the python process.

Declaration of the python class

The second header file declares the python classes that will be wrapping
the QL classes. The file quotes.pxd is reproduced below:

cimport _quote as _qt
from quantlib.handle cimport shared_ptr

cdef class Quote:
 cdef shared_ptr[_qt.Quote]* _thisptr

Notice that in our header files we use ‘Quote’ to refer the the C++
class (in file _quote.pxd) and to the python class (in file
quote.pxd). To avoid confusion we use the following convention:

	the C++ class is always refered to as _qt.Quote.

	the python class is always refered to as Quote

The cython wrapper class holds a reference to the QL C++ class. As we do not
want to do any memory handling on the Python side, we always wrap the C++
object into a boost shared pointer that is deallocated properly when
deallocation the Cython extension.

Implementation of the python class

The third file contains the implementation of the cython wrapper
class. As an illustration, the implementation of the SingleQuote
python class is reproduced below:

cdef class SimpleQuote(Quote):
 def __init__(self, double value=0.0):
 self._thisptr = new shared_ptr[_qt.Quote](new _qt.SimpleQuote(value))

 def __dealloc__(self):
 if self._thisptr is not NULL:
 del self._thisptr # properly deallocates the shared_ptr and
 # probably the target object if not referenced

 def __str__(self):
 return 'Simple Quote: %f' % self._thisptr.get().value()

 property value:
 def __get__(self):
 if self._thisptr.get().isValid():
 return self._thisptr.get().value()
 else:
 return None

 def __set__(self, double value):
 (<_qt.SimpleQuote*>self._thisptr.get()).setValue(value)

The __init__ method invokes the C++ constructor, which returns a boost shared pointer.

Properties are used to give a more pythonic flavor to the wrapping.
In python, we get the value of the SimpleQuote with the syntax
spot.value rather than spot.value(), had we exposed
directly the C++ accessor.

Remember from the previous section that _thisptr is a shared pointer
on a Quote, which is a virtual class. The setValue
method is defined in the SimpleQuote concrete class,
and the shared pointer must therefore be cast
into a SimpleQuote shared pointer in order to invoke setValue().

Managing C++ references using shared_ptr

All the Cython extension references should be declared using shared_ptr. The
__dealloc__ method should always delete the shared_ptr but never the target
pointer!

Every time a shared_ptr reference is received, never assigns the target pointer
to a local pointer variables as it might be deallocated. Always use the copy
constructor of the shared_ptr to get a local copy of it, stack allocated (there
is no need to use new).

Roadmap

	Provide binary version for Mac, Windows and Linux

	Increase the Python coverage for C++ classes

	Make the API more pythonic and user friendly to abstract more of the complex
C++ constructions

	Provide a better integration for large datasets

	Investigate potential OpenMP support

Documentation

List of online resources useful for the project:

	add examples from http://quantlib.org/slides/dima-ql-intro-1.pdf

	Fixed income - indexes (see http://quantlib.org/slides/dima-ql-intro-2.pdf
p78)

 Python Module Index

 q

 		 	

 		
 q	

 	[image: -]
 	
 quantlib	

 	
 	
 quantlib.pricingengines.swaption	

Index

 Q

Q

 	
 	quantlib.pricingengines.swaption (module), [1]

Reference documentation for the quantlib package

The API of the Python wrappers try to be as close as possible to the C++
original source but keeping a Pythonic simple access to classes, methods and
functions. Most of the complex structures related to proper memory management
are completely hidden being the Python layers (for example boost::shared_ptr and Handle).

quantlib

quantlib.settings

quantlib.quotes

quantlib.cashflow

quantlib.index

quantlib.interest_rate

quantlib.currency

quantlib.currency.currency

quantlib.currency.currencies

quantlib.indexes

quantlib.instruments

quantlib.instruments.bonds

quantlib.instruments.option

quantlib.instruments.credit_default_swap

quantlib.math

quantlib.model.equity

quantlib.pricingengines

quantlib.pricingengines.swaption

quantlib.processes

quantlib.termstructures

quantlib.termstructures.inflation_term_structure

quantlib.termstructures.default_term_structure

yield_term_structure

:quantlib.termstructures.yields

mod:~quantlib.termstructures.yields.rate_helpers

bond_helpers

flat_forward

zero_curve

quantlib.termstructures.credit

default_probability_helpers

piecewise_default_curve

flat_hazard_rate

interpolated_hazardrate_curve

quantlib.time

quantlib.time.date

quantlib.time.calendar

quantlib.time.daycounter

quantlib.time.daycounters

simple

thirty360

quantlib.time.schedule

Business dates

Business dates handling capabilities is provided by the quantlib.time
subpackage. The three core components are Date, Period and Calendar.

Date

A date in QuantLib can be constructed with the following syntax:

Date(serial_number)

where serial_number is the number of days such as 24214, and 0 corresponds to 31.12.1899. This
date handling is also known from Excel. The alternative is the construction via:

Date(day, month, year)

Here, day, month and year are of integer. A set of month constant are available in the date module (January, …, December or Jan, …, Dec)

After constructing a Date, we can do simple date arithmetics, such as adding/subtracting days and months to the current date. Furthermore, the known convenient operators such as +=,-= can be used.

It is possible to add a Period to a date. Period can be created using time units or frequency:

Period(frequency)
Period(lenght, time_units)

Frequencies are defined with the following constants: NoFrequency, Once,
Annual, Semiannual, EveryFourthMonth, Quartely, Bimonthly, Monthly,
EveryFourthWeek, Biweekly, Weekly, Daily and OtherFrequency.

Time units are constants defined in the date module: Days, Weeks, Months, Years.

Each Date object has the following properties:

	weekday returns the weekday using the weekday constants defined in the
date module (Sunday to Saturday and Sun to Sat).

	day returns the day of the month

	day_of_year returns the day of the year

	month returns the month

	year returns the year

	serial returns a the serial number of this date

The quantlib.time.date module has some useful static functions,
which give general results, such as whether a given year is a leap
year or a given date is the end of the month. The currently available
functions are:

	today()

	mindate(): earliest possible Date in QuantLib

	maxdate(): latest possible Date in QuantLib

	is_leap(): is year a leap year?

	end_of_month(): what is the end of the current month the date is in?

	is_end_of_month(date)(): is date the end of the month?

	next_weekday(date, weekday)(): on which date is the weekday following
the date? (e.g. date of the next Friday)

	nth_weekday(n, weekday, month, year)(): what is the n-th weekday in the
given year and month? (e.g. date of the 3rd Wednesday in July 2010)

Calendars

One of the crucial objects in the daily business is a calendar for different countries which shows the holidays, business days and weekends for the respective country. In QuantLib, a calendar can be set up easily via:

uk_calendar = UnitedKingdom()

for the UK. Calendars implementation are available in the
quantlib.time.calendars subpackage.

Various other calendars are available, for example for Germany, United States, Switzerland, Ukraine, Turkey, Japan, India, Canada and Australia. In addition, special exchange calendars can be initialized for several countries.
For example, the New-York Stock Exchange calendar can be initialized via:

us_calendar = UnitedStates(NYSE);

The following functions are available:

	is_business_day(date)()

	is_holiday(date)()

	is_weekend(week_day)(): is the given weekday part of the weekend?

	is_end_of_month(date)(): indicates, whether the given date is the last
business day in the month.

	end_of_month(date)(): returns the last business day in the month.

The calendars are customizable, so you can add and remove holidays in your calendar:

	addHoliday(date)()

	removeHoliday(date)(): removes a user specified holiday

Furthermore, a function is provided to return a list of holidays

	holidayList(calendar, from_date, to_date, include_weekends=False)():
returns a holiday list, including or excluding weekends. This function
returns a DateList object that provides an list/iterator-like interface on
top of the C++ QuantLib date vector.

Adjusting a date can be necessary, whenever a transaction date falls on a date that is not a business day.

The following Business Day Conventions are available in the calendar module:

	Following: the transaction date will be the first following day that is a business day.

	ModifiedFollowing: the transaction date will be the first following
day that is a business day unless it is in the next month. In this case it
will be the first preceding day that is a business day.

	Preceding: the transaction date will be the first preceding day that
is a business day.

	ModifiedPreceding: the transaction date will be the first preceding
day that is a business day, unless it is in the previous month. In this
case it will be the first following day that is a business day.

	Unadjusted

	The Calendar functions which perform the business day adjustments are :

	
	adjust(date, business_day_convention)

	advance(date,period, business_day_convention, end_of_month): the
end_of_month variable enforces the advanced date to be the end of the
month if the current date is the end of the month.

Finally, it is possible to count the business days between two dates with the following function:

	business_days_between(from_date, to_date, include_first, include_last)
calculates the business days between from and to including or excluding
the initial/final dates.

We will demonstrate an example by using the Frankfurt Stock Exchange calendar and the dates Date(31,Oct,2009) and Date(1,Jan,2010). From the first date, we advance 2 months in the future, which is December, 31st. Since this is a holiday and the next business day is in the next month, we can check the Modified Following conversion. The Modified Preceding conversion can be checked for January, 1st 2010:

frankfcal = Germany(FrankfurtStockExchange);
first_date = Date(31,Oct,2009)
second_date = Date(1,Jan ,2010);

print "Date 2 Adv:", frankfcal.adjust(second_date , Preceding)
print "Date 2 Adv:", frankfcal.adjust(second_date , ModifiedPreceding)

mat = Period(2,Months)

print "Date 1 Month Adv:", \
 frankfcal.avance(
 first_date, period=mat, convention=Following,
 end_of_month=False
)
print "Date 1 Month Adv:", \
 frankfcal.avance(
 first_date, period=mat, convention=ModifiedFollowing,
 end_of_month=False
)
print "Business Days Between:", \
 frankfcal.business_days_between(
 first_date, second_date, False, False
)

and the output will give

Date 2 Adv: 30/12/2009
Date 2 Adv: 4/01/2010
Date 1 Month Adv: 4/01/2010
Date 1 Month Adv: 30/12/2009
Business Days Between: 41

Day counters

Daycount conventions are crucial in financial markets. QuantLib offers :

	Actual360: Actual/360 day count convention

	Actual365Fixed: Actual/365 (Fixed)

	ActualActual: Actual/Actual day count

	Business252: Business/252 day count convention

	Thirty360: 30/360 day count convention

The construction is easily performed via:

myCounter = ActualActual()

The other conventions can be constructed equivalently. The available functions are :

	dayCount(from_date, to_date)

	yearFraction(from_date, to_date)

TODO : add example

Date generation

An often needed functionality is a schedule of payments, for example for coupon payments of a bond. The task is to produce a series of dates from a start to an end date following a given frequency(e.g. annual, quarterly…). We might want the dates to follow a certain business day convention. And we might want the schedule to go backwards (e.g. start the frequency going backwards from the last date).

For example:

	Today is Date(3,Sep,2009). We need a monthly schedule which ends at Date(15,Dec,2009). Going forwards would produce Date(3,Sep,2009),Date(3,Oct,2009),Date(3,Nov,2009),Date(3,Dec,2009) and the final date Date(15,Dec,2009).

	Going backwards, on a monthly basis, would produce Date(3,Sep,2009),Date(15,Sep,2009),Date(15,Oct,2009), Date(15,Nov,2009),Date(15,Dec,2009).

The different procedures are given by the DateGeneration object and will now be
summarized:

	Backward: Backward from termination date to effective date.

	Forward: Forward from effective date to termination date.

	Zero: No intermediate dates between effective date and termination date.

	ThirdWednesday: All dates but effective date and termination date are taken to be on the third Wednesday of their month (with forward calculation).

	Twentieth: All dates but the effective date are taken to be the twentieth of their month (used for CDS schedules in emerging markets). The termination date is also modified.

	TwentiethIMM: All dates but the effective date are taken to be the twentieth of an IMM month (used for CDS schedules). The termination date is also modified.

The schedule is initialized by the Schedule class:

Schedule(effective_date , termination_date, tenor, calendar, convention ,
 termination_date_convention , date_gen_rule,
 end_of_month, first_date, next_to_last_date)

The arguments represent the following

	effective_date, termination_date: start/end of the schedule

	tenor: a Period object reprensenting the frequency of the schedule
(e.g. every 3 months)

	termination_date_convention: allows to specify a special business day
convention for the final date.

	rule: the generation rule, as previously discussed

	end_of_month: if the effective date is the end of month, enforce the schedule dates to be end of the month too (termination date excluded).

	first_date, next_to_last_date: are optional parameters. If we generate the
schedule forwards, the schedule procedure will start from first_date and
then increase in the given periods from there. If next_to_last_date is set
and we go backwards, the dates will be calculated relative to this date.

The Schedule object has various useful functions, we will discuss some of them.

	size(): returns the number of dates

	at(i) : returns the date at index i.

	previous_date(ref_date): returns the previous date in the schedule compared
to a reference date.

	next_date(ref_date): returns the next date in the schedule compared to a
reference date.

	dates(): returns the whole schedule in a DateList object.

Performance considerations

In [3]: %timeit QuantLib.Date.todaysDate() + QuantLib.Period(10, QuantLib.Days)
100000 loops, best of 3: 9.71 us per loop

In [4]: %timeit datetime.date.today() + datetime.timedelta(days=10)
100000 loops, best of 3: 3.55 us per loop

In [5]: %timeit quantlib.date.today() + quantlib.date.Period(10, quantlib.date.Days)
100000 loops, best of 3: 2.17 us per loop

How to wrap QuantLib classes with cython

These notes provide a step by step guide to wrapping a QuantLib (QL) class
with cython, so that it can be invoked from python.

The objective is to make available in python a set of modules that
exactly mirror the QL class hierarchy. For example, QL provides a
class named SimpleQuote, that represents a simple price
measurement. The C++ class is defined as follows:

class SimpleQuote : public Quote {
 public:
 SimpleQuote(Real value = Null<Real>());
 Real value() const;
 bool isValid() const;
 Real setValue(Real value = Null<Real>());
};

After wrapping the C++ class, this class is now available in python:

from quantlib.quotes import SimpleQuote
spot = SimpleQuote(3.14)
print('Spot %f' % spot.value)

A couple of observations are worth mentioning:

	pyql preserves the module hierarchy of QuantLib:
the SimpleQuote class is defined in the quote module in C++.

	pyql exposes QuantLib in a pythonic fashion: instead of exposing the accessor value(),
pyql implements the property value.

The Interface Code

To expose QL class foo, you need to create three files. For the sake of
standardization, they should be named as follows:

	_foo.pxd

	A header file to declare the C++ class being exposed,

	foo.pxd

	A header file where the corresponding python class is declared

	foo.pyx

	The implementation of the corresponding python class

The content of each file is now described in details.

Declaration of the QL classes to be exposed

This file contains the declaration of the QL
class being exposed. For example, the header file _quotes.pxd is
as follows:

include 'types.pxi'

from libcpp cimport bool

cdef extern from 'ql/quote.hpp' namespace 'QuantLib':
 cdef cppclass Quote:
 Quote() except +
 Real value() except +
 bool isValid() except +

cdef extern from 'ql/quotes/simplequote.hpp' namespace 'QuantLib':

 cdef cppclass SimpleQuote(Quote):
 SimpleQuote(Real value) except +
 Real setValue(Real value) except +

In this file, we declare the class SimpleQuote and its parent Quote.
The syntax is almost identical to the corresponding C++ header file. The
types used in declaring arguments are defined in types.pxi.

The clause ‘except +’ signals that the method may throw an exception. It
is indispensible to append this clause to every declaration. Without it, an
exception thrown in QL will terminate the python process.

Declaration of the python class

The second header file declares the python classes that will be wrapping
the QL classes. The file quotes.pxd is reproduced below:

cimport _quote as _qt
from quantlib.handle cimport shared_ptr

cdef class Quote:
 cdef shared_ptr[_qt.Quote]* _thisptr

Notice that in our header files we use ‘Quote’ to refer the the C++
class (in file _quote.pxd) and to the python class (in file
quote.pxd). To avoid confusion we use the following convention:

	the C++ class is always refered to as _qt.Quote.

	the python class is always refered to as Quote

The cython wrapper class holds a reference to the QL C++ class. As we do not
want to do any memory handling on the Python side, we always wrap the C++
object into a boost shared pointer that is deallocated properly when
deallocation the Cython extension.

Implementation of the python class

The third file contains the implementation of the cython wrapper
class. As an illustration, the implementation of the SingleQuote
python class is reproduced below:

cdef class SimpleQuote(Quote):
 def __init__(self, double value=0.0):
 self._thisptr = new shared_ptr[_qt.Quote](new _qt.SimpleQuote(value))

 def __dealloc__(self):
 if self._thisptr is not NULL:
 del self._thisptr # properly deallocates the shared_ptr and
 # probably the target object if not referenced

 def __str__(self):
 return 'Simple Quote: %f' % self._thisptr.get().value()

 property value:
 def __get__(self):
 if self._thisptr.get().isValid():
 return self._thisptr.get().value()
 else:
 return None

 def __set__(self, double value):
 (<_qt.SimpleQuote*>self._thisptr.get()).setValue(value)

The __init__ method invokes the C++ constructor, which returns a boost shared pointer.

Properties are used to give a more pythonic flavor to the wrapping.
In python, we get the value of the SimpleQuote with the syntax
spot.value rather than spot.value(), had we exposed
directly the C++ accessor.

Remember from the previous section that _thisptr is a shared pointer
on a Quote, which is a virtual class. The setValue
method is defined in the SimpleQuote concrete class,
and the shared pointer must therefore be cast
into a SimpleQuote shared pointer in order to invoke setValue().

Managing C++ references using shared_ptr

All the Cython extension references should be declared using shared_ptr. The
__dealloc__ method should always delete the shared_ptr but never the target
pointer!

Every time a shared_ptr reference is received, never assigns the target pointer
to a local pointer variables as it might be deallocated. Always use the copy
constructor of the shared_ptr to get a local copy of it, stack allocated (there
is no need to use new).

Developer’s corner

Debugging with gdb

When running into segfault, the easiest way to debug things is to use gdb. Here
is a example trying to debug a segfault while accessing the implied_quote
property of a SwapRateHelper:

gdb python
(gdb) run quantlib/test/test_rate_helpers.py
Starting program: /Library/Frameworks/Python.framework/Versions/7.0/bin/python quantlib/test/test_rate_helpers.py
Reading symbols for shared libraries ++. done

Program received signal SIGTRAP, Trace/breakpoint trap.
0x8fe01030 in __dyld__dyld_start ()
(gdb) continue
...
Reading symbols for shared libraries . done
terminate called after throwing an instance of 'QuantLib::Error'
what(): term structure not set

Program received signal SIGABRT, Aborted.
0x915b4c5a in __kill ()

Market

PyQL is primarily a wrapper around QuantLib, and strictly follows the QuantLib class structure. A casual look at the PyQL test
suite will convince the user that using QuantLib, or its PyQL wrapper, requires a pretty detailed understanding of its class
structure. The number of market convention parameters that need to be supplied in order to perform the simplest calculation can be overwelming.

In an attempt to bring some order and logic to this profusion of market conventions, PyQL introduces the notion of Market.
A Market is the virtual place where financial assets are traded. It defines all the conventions needed to quote prices, measure yield, compute yield curves from market quotes, etc. Examples of these virtual market places are:

	Fixed income markets
* The US Treasury market
* The US Libor market
* The Euribor market

	Equity markets
* US Equity

A market fulfills two functions: it is a repository of market conventions,
and provides methods for performing
standard calculations on market quotes. This two functions are now detailed.

Repository of Trading Conventions

A market provides the following information:

	The calendar of business days

	The daycount conventions

Standard Calculations

The methods that are defined are function of the type of market under consideration. For Fixed Income markets:

	Bootstrapping of yield curves from market quotes

	Direct calculation of discount factors

Market quotes

Market quotes are provided as a list of tuples. Each tuple includes 3 items:

	Α label that identifies the type of instrument: DEP/SWAP/FRA/ED

	The tenor, as a string of the form ‘1M’, ‘10Y’, ‘3W’

	A numeric quote

Creating a new market:

m = usd_libor_market()

add quotes
eval_date = Date(20, 9, 2004)

quotes = [('DEP', '1W', 0.0382),
 ('DEP', '1M', 0.0372),
 ('DEP', '3M', 0.0363),
 ('DEP', '6M', 0.0353),
 ('DEP', '9M', 0.0348),
 ('DEP', '1Y', 0.0345),
 ('SWAP', '2Y', 0.037125),
 ('SWAP', '3Y', 0.0398),
 ('SWAP', '5Y', 0.0443),
 ('SWAP', '10Y', 0.05165),
 ('SWAP', '15Y', 0.055175)]

m.set_quotes(eval_date, quotes)

bootstrap a yield curve, using the market conventions
specific to the US Libor market

m.bootstrap_term_structure()

dt = Date(1,1,2010)
print('Discount factor for %s: %f' % (dt, m.discount(dt)))

Mlab

The mlab module provides high-level functions suitable for easily performing common
quantitative finance calculations. These functions use as input standardized data structures
that are provided to limit the amount of data
transformation needed to string functions together.

Standardized data structures

Curve building

Asset pricing

Notebooks

The notebooks and scripts folder provide sample calculations performed with
QuantLib.

Getting started

In order to use the notebokks, you need to install:

	Ipython 0.13

	pylab

	matplotlib

Make sure that pyQL is in the PYTHONPATH.
You can access the notebooks with the command:

ipython notebook --pylab inline <path to the notebooks folder> --browser=<browser name>

For example, on a linux system where the pyql project is located in ~/dev, the command to view the notebooks with the Firefox browser would be:

ipython notebook --pylab inline ~/dev/pyql/examples/notebooks --browser=firefox

The browser will start and display a menu with several notebooks.
As of October 2012, you should see 8 notebooks, as shown below:

[image: _images/notebook-browser.png]
Notebook menu in the Firefox browser.

Reference

The mlab module provides high-level functions suitable for easily performing common quantitative finance calculations. These functions use as input standardized data structures that are provided to limit the amount of data transformation needed to string functions together.

The mlab functions often use pandas data frames as inputs. In order to encourage inter-operability between functions, we have defined a number of standard data structures. The column names of these data frames are defined in the ‘’names’’ module. The standardized data structures should be created with the functions provided in the ‘’data_structures’’ module.

Names

The column names of all datasets are defined in names.py. A column name should always be referenced by the corresponding variable name,
and not by a character string. For example, refer to the ‘Strike’ column of an option_quotes data
set by:

import quantlib.reference.names as nm
strike = option_quotes[nm.STRIKE]

rather than:

strike = option_quotes['Strike']

Data Structures Templates

These data structures are defined to facilitate the inter-operability of the high level functions found in the ‘mlab’ module.

Option Quotes

This data structure contains the necessary data for calibrating a stochastic model for the underlying asset, also known as volatility model.

An option quotes data structure with 10 rows is created with the statements:

import quantlib.reference.data_structures as ds
option_quotes = ds.option_quotes_template().reindex(index=range(10))

Risk-free Rate and Dividends

When calibrating a volatility model, the default algorithm is to compute the implied term structure of risk-free rate and dividend yield from the option data, using the call-put parity relationship. The result of this calculation is the ‘riskfree_dividend’ data structure.

 _static/up.png

_images/notebook-browser.png
BZills Firefo;

x 0|
File Edit View History Bookmarks Tools Help

1Py IPython Dashboard (+]

@ 127.0.0.1:8888 v @] [#v coogle

IPyI: Notebook

Notebooks | Clusters

E

To import a notebook, drag the file onto the listing below or click here. o || New

Ihome/phn/dev/pyqliexamples/notebooks
Download USD LIBOR

HestonSimulation

LiborRiskFactors
OptionQuotes
SPX_Options
usD it Sws

‘american option
heston_calibration

T

_static/ajax-loader.gif

_static/comment-bright.png

_static/comment-close.png

nav.xhtml

 Table of Contents

 		
 Welcome to PyQL’s documentation

 		
 Getting started

 		
 PyQL - an overview

 		
 Features:

 		
 Building and installing PyQL

 		
 Installation from source

 		
 Installation from source on Windows

 		
 Tutorial

 		
 User’s guide

 		
 Business dates

 		
 Date

 		
 Calendars

 		
 Day counters

 		
 Date generation

 		
 Performance considerations

 		
 Reference

 		
 Names

 		
 Data Structures Templates

 		
 Mlab

 		
 Standardized data structures

 		
 Curve building

 		
 Asset pricing

 		
 Notebooks

 		
 Getting started

 		
 Reference guide

 		
 Reference documentation for the quantlib package

 		
 quantlib

 		
 quantlib.currency

 		
 quantlib.indexes

 		
 quantlib.instruments

 		
 quantlib.math

 		
 quantlib.model.equity

 		
 quantlib.pricingengines

 		
 quantlib.processes

 		
 quantlib.termstructures

 		
 quantlib.time

 		
 How to wrap QuantLib classes with cython

 		
 The Interface Code

 		
 Declaration of the QL classes to be exposed

 		
 Declaration of the python class

 		
 Implementation of the python class

 		
 Managing C++ references using shared_ptr

 		
 Roadmap

 		
 Documentation

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

